Tag Archives: riveting

Elevator priming & counterweight riveting

Hours: 4

While I was waiting for some parts to complete the ribs for the Vertical Stabilizer, I got started working on the Elevator. Since there are a lot of parts to the Elevator I broke it down into smaller tasks, first preparing the parts of the center counterweight and then I’ll continue next with the other parts of the structures.

So onto another session of preparing the parts, deburring holes and edges and cleaning with Simple Green & degrease with MEK. After that was all done it was back into my small paint booth to prime everything.
Cleaning Station in action Cleaning the Elevator parts with Simple Green Priming the counterweight parts Priming some of the Elevator channels Priming some of the Elevator parts

Riveting the Elevator Counterweight

After all that had time to cure for a day I went to work to put together the center counter balance weight support (that’s a mouthful).
I found a small error in the instructions that say that there are 14 rivets in the center, but it’s actually 16 rivets. Sometimes with these small errors I wonder if they are intentional to keep us builders on our feet to make sure we “measure twice and drill once” – I sent the Factory a note to correct the error in the instructions for the next iteration.

So after I laid out all the parts I put everything together using clecos and the two AN3 bolts and then went to work riveting it together. A friend was visiting from Ireland as well, so after a tour of the garage and everything he also pulled his first rivet and I had him sign his name under it.Parts of the Elevator Center Counter Balance Weight Support laid out Everything clecoed together Done riveting the Center Counter Balance Weight Done Riveting the Center Counter Balance Weight

Rudder Timelapse video

I also recently finished editing together the work on the Rudder, so here’s the completed Timelapse video:

Rudder Tip fitting & riveting the skin

Hours: 2.5

After having primed the inner surface of the Rudder skin the other day, I had all the pieces together to start working on finishing the rudder.

I attached the skin onto the structure and clecoed it into place.Rudder skin clecoed in place

Fitting the fiberglass tip

Once that was done, I went to work to fit the fiberglass tip onto the skin. I had to trim a little bit away from the bottom of the fiberglass. I made a first rough measurement, trimmed it away using my Dremel and then tried to fit it in.
First trim mark on the fiberglass tip

After aligning it all, I did a second small pass to trim a tiny bit more, placed it into the skin again and then it looked all good.
Tip fit in place and held in place using some clamps

Since the instructions are very explicit to make sure that the alignment of the rudder is perfect, I checked the alignment from all sides and it all looked good.
Rudder checked for alignment using laser level Rear of the rudder checked for alignment using laser level

After all that looked good and triple and quadrupple checking that the fiberglass tip sat flush in the skin I made marks for match drilling the holes and then went to work and carefully drilled the holes into the fiberglass.
First few holed drilled into the fiberglass tip Finished drilling all the holes in the fiberglass tip

Countersinking the front of the fiberglass tip

Once that was done, it was time to countersink the holes in the front. The instructions contradict themselves – only the first 7 holes get countersunk rivets, which mathematically adds up properly to the 32 rivets (2 x 7 on the top and 2 x 9 on the bottom = 32). So after counting all the holes and re-checking the instructions and doing basic math, I decided to only countersink the first 7 holes. I sent an email to the factory yesterday and they confirmed that I was right and they’ll fix the instructions in the next iteration.
Instruction error about countersinking

Before I went to work with the countersinking, I calibrated the micro stop countersinking tool using a scap piece of Aluminum to ensure the depth was set correctly and made sure that I had the correct 120 degree pilot cutter in the tool (I made a whole post about why using the 120 degree pilot was important here).
Calibrating the Microstop Countersinking tool Making a test countersink on a scrap piece of metal

After all that was ready, I went to work, mounted the fiberglass tip gently in my bench vise and started drilling the countersink holes.
First countersunk hole drilled Checking depth using a countersunk rivetAll the countersunk holes drilled in the fiberglass tip

All the countersunk holes came out well and everything sits flush now.
Flush fit of the fiberglass tip in the Rudder

Riveting the skin

So after all that I went to work and started riveting some of the skin.Time to rivet the Rudder skin The close quarter wedge came in handy for riveting in this tight spaceRiveted part of the Rudder skin

Finished riveting the Horizontal Stabilizer skin

Hours: 4.5

The pop dimpling tool that I ordered a few days ago arrived on Friday, so I spent some time trying it out to make sure it worked properly so I could finish adding the missing dimple to the skin and finish closing up the Horizontal Stabilizer.

After a bunch of research on them, I actually ordered 2 different tools, one is made by Aircraft Tool Supply and creates a 100 degree dimple, and the other one promises to create a 120 degree dimple, I’m not sure who exactly actually makes it, but it’s sold via Wicks Aircraft tools. The 120 degree tool from Wicks is DT-17014 and it’s supposed to screw into a G28 hand riveter.
120 Degree Pop dimple tool
Unfortunately the Hand Riveter I own seems to have smaller threads than the G28 hand riveter, so I decided to try it on my Milwaukee rivet gun which had the correct thread size. As I found out when I pulled with it, that ended up with too much force, so the head of the stem (which is a finishing nail) that is supposed to hold the back of the dimple in place actually deformed and got pulled into the top and got stuck.

So after that happened, I had to cut off the nail, but I couldn’t pull it out of the tool, so I got out my Dremel and cut off the top part of the bit where the deformed head got stuck in.
Nail stuck in the tool
This way I could try to use the tool like the ATS pop dimple tool (5102D-1/8) works, which just sits on top of the rivet puller.
ATS tool on the left and the other one on the right (after I cut off the top):
100 degree Dimple tools from ATS on the left and 120 degree tool on the right (after I cut off the thread head)

So now after that modification to the tool, I tried both by holding my test piece onto the existing dimples of the Horizontal Stabilizer and determined (as expected), that the 120 degree dimple has the better fit, so I used that one to make the dimple to the skin. It came out well and the countersunk rivet sits flush like the other dimples. So for one or two dimples, this works out nice and easy and I didn’t have to go and get a dimpling press.

Pop dimple tool using the hand riveter Dimple using the pop rivet tool came out well and the countersunk rivet sits nice and flush like the others

Riveting the skin

Once all that was said and done, I got to work and riveted the complete bottom of the left side skin. Then turned it around, removed all the Clecos from the top side one last time so I could apply the Sealant to the support plate like I did on the other side. And then I finished up riveting the top side.

Timelapse Video of Finishing the Horizontal Stablizer

And lastly as promised, here’s the timelapse video of the whole endeavor of the Horizontal Stablizer.

Riveting the Horizontal Stabilizer skin

Hours: 3

The journey of the Horizontal Stabilizer continues with match up-drilling all the dimpled holes to fit the countersunk rivets. So basically this, multiplied by 200:

After I was done, I took off the skin one last time to clean out all the debris from the drilling and check and fix any burrs. After that it was time to put it back together again and do one last check for alignments before riveting using my self leveling laser level.Cleaning out the debris from reaming out all the holes  Alignment checked using my laser level

And then at last, time to start the riveting. I managed to finish the bottom of the right side, so 3 more sides to go next time.

One small problem I encountered while doing the riveting was, that because I was riveting straight down, it happened twice that some of the mandrels of the 3.2 mm rivets got stuck in the rivet gun, so I had to take it apart and push/pull out the mandrels.

Mandrels stuck in the rivet gun