Tag Archives: tools

Installing the Pitot Tube

Hours: 8

After a couple of weeks of taking some time off active building while life happens and figuring out and planning out some things, I’m back to actively riveting on the airplane.

Time to finish the Pitot Tube after having cut the inspection panel hole and running the wiring a few months ago and lots of learnings about new tools, from the wiring, to flaring the tubes and connecting AN fittings.

I’m using the Garmin GAP 26 heated & regulated Pitot Tube (GAP 26-20). This version automatically controls whether the Pitot Tube needs to be heated using a regulator controller that is mounted next to the Pitot Tube and will only apply heat if needed based on outside temperatures.
This basically will allow me to always turn on the Pitot Tube in my panel as part of my standard operating procedures and the regulator will control whether it actually needs to be heated to prevent icing.

The installation instructions for this can be found in the Garmin G3X installation Manual.

After studying the installation manual to make sure I install it correctly, I measured the tube and had to figure out how far I have to cut it in order to fit.

Fitting the Pitot Tube

The Pitot and Angle of Attack (AOA) mast are over 12 inches out of the box, and that won’t fit. I made an initial guess and cut a bit shorter, but I was still too long so I made a series of shortenings and test attaching the fittings until I had it dialed in.

First test fit shows that the masts are too long and need to be cut further.

In the end, I had the masts cut down to right around 8 1/2 inches. The Garmin manual says to keep a minimum of 8 inches between the probe and transition to non-metalic tubing, so I had a little bit of margin.

Time for flaring the tubes. The AN fittings use a 37 degree flare, so I got a Rigid 377 flaring tool and a metal tubing cutter to cut the tube. Before doing this on the real Pitot Tube, I made some test flares on a spare tube I bought from Aircraft Spruce.

Make sure you put the AN fittings onto the tube before you do the flaring (I may or may not have forgotten it the first time and cut and redo the flare once).
Make sure you put the AN fittings onto the tube before you do the flaring (I may or may not have forgotten it the first time and cut and redo the flare once).

After I had that dialed in, I did another test fit to get the length correct, accounting for the bend towards the tube and then mounted the fittings.

Mounting the fittings to the tube.

Final fit and connecting to the nylon tubes inside the wing after having cut the nylon tubes.

Final fit and connecting to the nylon tubes inside the wing.

Installing the regulator and wiring

With the Pitot Tube itself installed, time to finish the regulator and wiring that controls the heating of the Pitot Tube.

As I explained previously, I plan to mount the regulator unit onto the inspection panel plate, so I did some measuring and orienting to make sure the twist action of the round plate wouldn’t interfere with the wires coming out of the regulator.

Here is the final orientation that I figured out would work best (the screw will mount to the bottom, so the wires will come out the top):

Here is the final orientation that I figured out would work best (the screw will mount to the bottom, so the wires will come out the top).

I contemplated between screwing or riveting it on, but I figured that it’s unlikely that it will need to be changed out frequently, so I riveted it onto the plate.

Completed inspection panel plate with the Garmin Regulator mounted.

The last part was to create a connection from the regulator to wires I ran through the wings. I used some weatherpack connectors for this, which create a waterproof connection and a solid crimp, similar to the Delphi GT 150 that Midwest Panel uses to connect the wiring harness.

Crimped wires to connect to the regulator (blue connects to the panel to communicate with the G3X to see whether Pitot heat is active)

Final completed connection between the regular, the Pitot Tube and the wires running to the center.

Final completed connection between the regular, the Pitot Tube and the wires running to the center.

Installing the plate to the wing

The last and final part of the installation was to mount the inspection panel plate onto the wing. I did this last to prevent scraping up my arm while I had to do all the mounting inside the wing, since the backing plate that holds the plate in place has a series of pokey corners that love to eat airplane builder blood.

First I lined up the plate with the wing and then did the match drilling of the holes:

First I lined up the plate with the wing and then did the match drilling of the holes.

The I dimpled the plate and the matching holes on the wing and riveted it in place.

The I dimpled the plate and the matching holes on the wing and riveted it in place.

And here is the completed and closed up Pitot Tube and Inspection Plate that holds the regulator:

And here is the completed and closed up Pitot Tube and Inspection Plate that holds the regulator.

Timelapse of the entire installation

Walkthrough of my workshop

It’s been a while in the making after a few requests over the past several months, so I finally took the time and do a walkthrough of my Workshop where I’m building my Sling TSi.

Apart from walking through my garage workshop setup and a bunch of the tools I’m using throughout the build, I’ve also given a small update on my current tasks. I’m waiting for the balance tube to finish off the ailerons and I’m currently finishing up the installation of the pitot tube, after running the electrical wiring the other day.

I’ll make a separate post on the installation of the pitot tube when I’m done, but here’s a preview picture of the first fitting to figure out the length of the tubing:
Fitting the pitot tube to figure out the correct length of the tubing

 

Pitot Electrical Wiring

Hours: 5

After cutting the hole for the inspection panel a few days ago, I continued and ran the wires for the heating.

I figured out where I want to run the wires a while back after some tinkering and I am using one of the strut channels for the length of the wing, except the very end at the wing-walk where I had to make one curve down the bottom.

After some trial and error, I found that 3/8 in size wire loom tubing fits perfectly in the channel and with the help of my Wireless Endoscope connected to my phone I was able to finagle it through the wing with some mild scrapes on my arms.

Starting to run the wire loom  Wire loom at the new Pitot Inspection hole Fishing for the loom (very bottom with the pliers)

The hardest part was figuring out a good way to come out the bottom where the wing-walk is, since the strut channel doesn’t go through there. On the last picture above, you can see when I finally managed to grip on to where I want the loom to come out of with the help of some duckbill pliers, which were a suggestion from my EAA chapters Technical Counsellor when he visited a few months ago.
Duckbill pliers to the rescue

Running the wire

With the question of where to run the wire solved, onto actually running the wires.

I am installing the Garmin GAP 26 Heated/Regulated Pitot Tube, which comes with a Regulator that needs to be installed next to the Pitot tube and controls whether the Pitot tube actually needs to be heated.

For this, there are three wires to run – two for the power and one for the discreet output, which integrated into the Garmin G3X Panel to show when the Pitot Tube is actually heated.

I ran the three wires through some braided sleeving to give them some extra protection and make running them through the wire channel easier in one go.Feeding the 3 wires into the braided sleeve

With that out of the way it “just” took a lot of back and forth, more use of the Endoscope and the thin arms of Juliana and repeated shouts of “push, push” and together we managed to run the wire all the way. She cheerfully pronounces “Congratulations, it’s a wire” as it came out the other end.
My friendly helper to run the Pitot wiring Congratulations, it's a wire

Finishing the Elevator

Hours: 2.5

With most of the preparations out of the way and half of the skins riveted, I took one more session to finishing the Elevator.

There was only one extra part I had to do for 3 of the rivets that were on the bottom edge. In order for them to fit correctly, I had to shorten the rivets so they wouldn’t protrude out.
Rivet too long to fit Fitting rivet after I shortened it I mounted the rivet in my bench vise and filed it down to size Shortened Rivets on the right and one with normal length on the left

Aside from that, I just went to town and pulled the rest of the few hundred rivets.
Time to pull some rivets Halfway done riveting the skins Final set of rivets ready to be riveted Riveting the Trim Tab

The last part on the riveting side was the front lip.
Clecoing the front lip Riveting the front lip

One of the holes on the lip has to be enlarged to fit a grommet for the wiring for the Elevator Trim Tab. I enlarged the hole using my step drill bit and then installed a snap bushing.
Marked out the hole that needs to be enlarged for the wiring Marked out the size on the step drill bit Hole enlarged and Snap Bushing installed

The last part was to install the center balance counterweight. I did some test fitting with this, but the AN3-13A bolts that one of the versions of the manual that I have mentioned are too short, so I’ll check with the factory on the proper length.
Test fitting the Balance Counterweight - the bolts are too short

With that being said, the general assembly of the Elevator is completed:

Timelapse of the complete construction of the Elevator

With the Elevator construction completed, I’ve also finished my video timelapse of the process:

Riveting the Elevator skins

Hours: 3.5

With the final preparations and alignments of the Elevator done, the last task is to rivet up the Elevator skins.

Horizontal Stabilizer and Elevator temporary joined for alignment and looking good

The process is pretty straightforward, but there are a lot of rivets to be pulled, so it’s a lot of repetition, so I spread the work out over a few sessions.
Setting up rivets Almost done with the left underside Finished left underside

I first did the half of the bottom, both left and right side, and then finished up the left side completely, followed by the right side.
Setting up the final few rivets for the right underside Bottom of the entire Elevator completed

For the Trim Tab control tabs I had to get out the close quarter wedge.
Using the close quarter wedge to be able to attach the rivets for the Trim tab Control

After I finished the entire bottom half of the Elevator I flipped it around and put a small padding onto the Trim Tab control so it can’t dig into the Elevator skin.
Protection for the Trim Tab control

EAA SportAir Electrical Systems & Avionics Workshop

This past weekend I attended the EAA SportAir Electrical Systems & Avionics workshop at the Seattle Museum of Flight Restoration Center.

The two day workshop helped in explaining principles of airplane electrical systems, wiring and bringing everything together to design and build out your avionics.

Workshop Handbook

Aside from a lot of good learnings and explanations, there was also a couple of hands-on exercises to get familiar with crimping, soldering and connecting things.

The first exercise was to hook up a headset jack to a PM1000 intercom system. This was very handy, since whether you decide to build all your avionics or not, you will most definitely have to do the headset connectors.

I forgot to take pictures of the process, but here’s the finished headset jacks with the soldered connection. This included learning to ground the shielded wire, soldering the actual headset jack and doing some d-sub crimping for the intercom connector.

Finished Headset connector and crimped BNC Antenna connector

Also shown in the image above is the result of the second exercise, a crimped BNC antenna connector. This part, I was already familiar with from hooking up my NAV Antenna in the Rudder a few months ago.

The final exercise was to create a small electrical circuit. This includes a “master” switch, circuit protection in the form of a fuse and a dimmable “cabin” light that is tied behind the master switch. Aside from the practical application of the exercise, it also tied together a lot of the theoretical parts of the workshop and was a great finish for the weekend.

Getting started Wiring in progress System wired up

Here’s the finished working circuit in action:

I also ran into two other Sling Builders, Richard Howell, who recently started building a Sling 2 and Skip Jones, who is also building a Sling TSi. Now we just need to all finish building our airplanes and then we can be a chapter of Sling Pilots in the Pacific Northwest.

Cutting a round inspection access panel hole

Hours: 2

One of the things that the factory forgot as part of the change from the Sling 4 to the Sling TSi was the required access to the internals of the wing next to the Pitot tube.

In the Sling TSi design, some inspection panels were removed including the one next to the Pitot tube. By itself, if someone was building the wings from scratch, that might be fine as long as the builder installs the Pitot tube beforehand and doesn’t anticipate to ever need to access it, such as if using an unheated Pitot tube.

However, I am going to use the Garmin heated & regulated Pitot tube, which not only requires wires to be run to the Pitot tube, but also that I need to mount the regulator unit next to it.

Since I ordered the quickbuild, I ordered it with this specification, but unfortunately the factory didn’t receive the Pitot tube from their supplier in time and shipped my kit without installing it.

So after I received my shipment and inspected everything, I realized that installing this after the fact wasn’t going to be easy, particularly with the lack of a hole in the wing. Unfortunately the factory also forgot to run the wiring to the pitot tube, which creates a whole second issue, for which I’ve been working on a solution.

I informed the factory a while ago and also gave Matthew, one of the other TSi builders a heads-up since he hadn’t started on the wings yet. The factory realized their mistake in the plans and promised to come up with a solution and send me instructions and a plan.

Drafting a plan

While I was waiting for the factory to come up with a plan, I actually started drawing up my own plans to fabricate the entire inspection panel myself and used it as an opportunity to learn and use Solidworks, which I can use for free as part of being an EAA member.
Initial draft of the panel on paper My panel design in Solidworks

Since I had the chance to chat with Mike Blyth at Oshkosh for a while and we chatted about my build, I mentioned that I was still waiting for the factory to come up with a plan for the inspection cover and he promised that he’d check on the progress when he got back to South Africa and indeed, two weeks later, I got an email with the plans.

The factory plans, in keeping with the other inspection access panels, uses the same flush round inspection cover that is used to access the Flaps and Aileron connecting rods.

Factory plans for the new inspection access panel

Since I am still busy with other things in the build and haven’t actually made my own panel yet, I am going to go with the factory plans that they have drawn up for me.

Cutting a round inspection access panel hole

There is just one difficulty to overcome – the access panel is round and large and I don’t think there are 143.4 mm drill bits I can buy in Home depot.

After a bit of research, I found a solution in using a drill attachment sheet metal nibbler that can cut around a center pivot and can attach to my Milwaukee hand drill.

Since this is quite an operation, I decided to get some practice with the tool on a piece of spare aluminum and also made a video of it, since I figured that it might be helpful for other builders in the future.

I started by marking out the circle using a drafting compass. It’s been quite a few years, but luckily I still remembered how to use it and how to find the center of the circle again by making two marks. Proof that you may indeed use what you’ve learned in geometry class sometime in life, even if it’s 15 years later. After that I clamped the piece of metal on the edge of the table.

I drilled the center pivot hole to 1/8th of an inch, which makes the pivot sit in the hole and then measured out the starting hole for the drill, make a starter hole and then used a step drill bit to upsize the hole until it aligned with my marked circle.

After that, I set up the drilling tool with the pivot and made sure that the outside of the cutting bit aligns with my circle and then attached the drill and went to work.

Here are a couple of pictures of the first circle I cut – note that briefly I had the pivot point jump out of the hole, which caused me to waver a bit which you can see towards the bottom where it’s not perfectly round, so make sure the pivot continues to stay in the hole.

Marking out the circle using a compass Clamping down the metal on the table Cut hole and the inside disk - I did waver a little bit on the bottom as I didn't hold the pivot in place perfectly for a moment. So practicing this will pay off to not repeat the mistake. Inspection cover "test fit" Tools used to cut the access panel

Annotated video of the process of cutting the hole

 

Oshkosh 2019 recap

It’s been a busy few weeks after returning from Oshkosh, so it’s been a while since I’ve written an update.

Since I spent the whole week at Oshkosh, I had a lot of time to figure out various bits and pieces that will go into the airplane and talk to the various vendors. I also finally got to meet Adam and Steve from Midwest Panel Builders who I’m working with for the Avionics.

It was great to get a feel for various things including the control sticks – I will go with the Tosten grip.
Tosten control grip

Another thing I was looking at is the TCW Control Valve servo for the vent shutoff valve that the TSi has. The standard design for this is a physical shutter that I’m not a great fan of, as I feel it looks a bit out of place in the panel. So I was looking for alternative options and Adam mentioned this servo as a possible option. After I checked it out, I think indeed it might be a nicer solution and I will try to make it work. In fact I might also use it for the heating control.
TCW Control Valve servo

Aside from figuring out things for my own build, I also attended a lot of seminars, saw a lot of cool airplanes and the airshows and met a lot of interesting people and stories.

I also spent a lot of time lurking around the Sling tent and checking out various details of the completed Sling TSi that they had on display there. It was nice to see how a lot of the small details to the plans for the fit and finish were in this plane, which didn’t exist in Wayne’s TSi yet.

I was also able to meet a few of the other Sling builders at the Sling Ding meeting and had a long chat with Craig and Austin about our various builds. And I got to meet John & Marta King who I have to give credit to getting me through the ground school of my private and instrument training and ran into a few other people including Angle of Attack, Aviation 101, Jason Miller, JP The Candourist and Mike Patey and Draco the bush plane.
John & Martha King Angle of Attack, Aviation 101 and Jason Miller JP aka The Candourist Mike Patey Draco

Elevator structure

Hours: 5.25

Time to finish off the Empennage and get the Elevator structure going. I received the replacement ribs that are bent just that little bit more in order to properly align with the reinforcement plates and skins and went to work to drill out the bad ribs and put in the replacements.

New ribs in place and a final picture of a few rivets that people that visited helped pull

After that, I went to work and torqued the bolts that connect the control rod and counterweight to the Elevator. There’s also a small support bracket that reinforces the center rib to spar attachment, which is a pretty tight fit, so I had to get out the manual hand riveter.
Torquing the AN bolts Bolts torqued and support plate riveted

My brother is currently visiting and is enjoying the riveting experience.
My brother enjoying the riveting experience

Once the center ribs were finished, we moved on to put the rest of the rib structure in place.Elevator rib structure finished Clecoing the ribs in place

After that I realized there’s a mistake in the plans as they instruct to rivet the edges that hold some of the side counterweights on, but there’s another small end rib that actually has to go on there as I found out after I checked the overall plan for the Elevator. Quickly drilled out the rivets and riveted on the part. A nice trick I learned from another builder for drilling out the rivets without damaging the holes they go through, is to only drill out the top of the rivet (the donut ring) and then use the center punch to push out the back of the rivet. This way you have less chance of enlarging the hole.
Error in the plan says to just rivet the endcap, but actually this part needs to be riveted onto the side End rib where it should go Holes drilled out and end rib ready to rivet

With the rib structure in place, time to work on fitting the skin.

Finishing the Flaps

Hours: 6

With the ribs for the Flaps out of the way, I am ready to finish the flaps. First order of business is to ensure that I have the ribs all in the right order.
Completed ribs laid out along the right Flap

Once that was figured out, I first clecoed the ribs in place to the bottom of the skins and then closed up the skins and clecoed the top as well.
Ribs clecoed in place to the bottom of the Flaps skin Clecos in place to close up the right Flap

After checking that everything is aligning properly with the skins, I started riveting the skin. The top side is pretty straightforward. For the bottom side, there are a couple of tight spots next to the hinges, so the close quarter rivet wedge came in handy for a couple of the rivets.

Rivets in place Close quarter rivet wedge to rivet the tight space next to the hinge Bottom right side Flap ready to rivet Bottom right side flap almost done riveting

With the right side Flap finished and closed up, I then repeated it all for the left side Flap. There was also a couple of the edges where the hinges sit that needed a bit of deburring attention.
Some deburring was needed for the hole where the hinges go through Upside down view of the left side Flap ribs clecoed in place Almost done with the left side Flap riveting

After I finished the top skins, I did one quick alignment test fit on the wings and everything looked good, so then I finished up both sides by riveting the front rivet lane that closes the skin against the other side.
Front line ready to close up the skins of the Flaps for good Almost done riveting the Flaps Completed left Flap Both Flaps completed

Final alignment check

Once I finished all the riveting, I did one final test fit onto the wings. I used a bit of mason string and my laser level and everything is looking good. Now onto finishing the Elevator.
Final test fitting and alignment checks Final test fitting and alignment checks

Timelapse of building the Flaps